

Chapter Objectives

- To introduce the concepts of position, displacement, velocity, and acceleration
- To study particle motion along a straight line and represent this motion graphically
- To investigate particle motion along a curved path using different coordinate systems
- To present an analysis of dependent motion of two particles
- To examine the principles of relative motion of two particles using translating axes
 Copyright © 2017 Pearson Education
 Gau Lih Book Co., Ltd.

EXAMPLE	12.1 CONTINUED
	SOLUTION
	Coordinate System. The position coordinate extends from the fixed origin <i>O</i> to the car, positive to the right.
	Position. Since $v = f(t)$, the car's position can be determined from $v = ds/dt$, since this equation relates v, s, and t. Noting that $s = 0$ when $t = 0$, we have*
	$(\pm) \qquad \qquad v = \frac{ds}{dt} = (0.6t^2 + t)$
	$\int_{0}^{s} ds = \int_{0}^{t} (0.6t^{2} + t) dt$
	$s \Big _{0}^{s} = 0.2t^{3} + 0.5t^{2} \Big _{0}^{t}$
	$s = (0.2t^3 + 0.5t^2) \text{ m}$
	When $t = 3$ s,
	$s = 0.2(3)^3 + 0.5(3)^2 = 9.90 \text{ m}$ Ans.
Copyright © 201	/ Pearson Education Solution

EXAMPLE 12.8 CONTINUED Time. The time can be obtained using the v -s graph and $v = ds/dt$,	
because this equation relates v, s, and t. For the first segment of motion, $s = 0$ when $t = 0$, so $0 \le s < 80$ m; $v = (0.2s + 4)$ m/s; $dt = \frac{ds}{v} = \frac{ds}{0.2s + 4}$ $\int_0^t dt = \int_0^s \frac{ds}{0.2s + 4}$ $t = \left[5 \ln\left(\frac{0.2s + 4}{4}\right)\right]$ s At $s = 80$ m, $t = 5 \ln\left[\frac{0.2(80) + 4}{4}\right] = 8.047$ s. Therefore, using these initial conditions for the constant of motion	a (m/s2)
initial conditions for the second segment of motion, $80 \text{ m} < s \le 160 \text{ m}; v = 20 \text{ m/s}; dt = \frac{ds}{v} = \frac{ds}{20}$ $\int_{8.047 \text{ s}}^{t} dt = \int_{80 \text{ m}}^{s} \frac{ds}{20};$ $t - 8.047 = \frac{s}{20} - 4; t = \left(\frac{s}{20} + 4.047\right) \text{ s}$ Therefore, at $s = 160 \text{ m},$ 160	
$t = \frac{160}{20} + 4.047 = 12.0 \mathrm{s} \qquad Ans.$	
Copyright © 2017 Pearson Education	🚫 Gau Lih Book Co., Ltd.

	Kinematic Equations.	
12.(• Depending upon the known data and what is to be determined, a choice should be made as to which three of the following four equations should be applied between the two points on the path	
	to obtain the most direct solution to the problem.	
	Horizontal Motion.	
	• The velocity in the horizontal or x direction is constant, i.e., $v_x = (v_0)_x$, and	
	$x = x_0 + (v_0)_x t$	
	Vertical Motion.	
	• In the vertical or <i>y</i> direction <i>only two</i> of the following three equations can be used for solution.	
	$v_{\rm y} = (v_0)_{\rm y} + a_c t$	
	$y = y_0 + (v_0)_y t + \frac{1}{2}a_c t^2$	
	$v_y^2 = (v_0)_y^2 + 2a_c(y - y_0)$	
	For example, if the particle's final velocity v_y is not needed, then the first and third of these equations will not be useful.	
Copyrigh		Co., Ltd.

And the second se	12.11 CONTINUED		
SOLUTION			
	stem. The origin of coordinates is es e path, point A, Fig. 12–21. The initial ve		
has components	$(v_A)_x = 12 \text{ m/s and } (v_A)_y = 0. \text{ Also, be}$	tween points A	
	ration is $a_y = -9.81 \text{ m/s}^2$. Since $(v_B)_x = 0$ owns are $(v_B)_y$, R, and the time of flight		
not need to dete		AB. Here we do	
Vertical Motio	n. The vertical distance from A to B	is known and	
	n obtain a direct solution for t_{AB} by usin		
(+↑)	$y_B = y_A + (v_A)_y t_{AB} + \frac{1}{2} a_c t_{AB}^2$		
	$-6 \text{ m} = 0 + 0 + \frac{1}{2}(-9.81 \text{ m/s}^2)t_{AB}^2$		
	$t_{AB} = 1.11 \text{ s}$	Ans.	
Horizontal Mo as follows:	tion. Since t_{AB} has been calculated, H	R is determined	
(土)	$x_B = x_A + (v_A)_x t_{AB}$		
	R = 0 + 12 m/s (1.11 s)		
	R = 13.3 m	Ans.	
	ulation for t_{AB} also indicates that if a sac it would take the same amount of tin		
floor at C, Fig. 1		ie to strike the	

E	EXAMPLE 12.13 CONTINUED
	Horizontal Motion. The range R can now be determined.
	$(\pm) \qquad \qquad x_B = x_A + (v_A)_x t_{AB}$
	$R = 0 + 13.38 \cos 30^{\circ} \mathrm{m/s} (1.5 \mathrm{s})$
	= 17.4 m Ans.
	In order to find the maximum height <i>h</i> we will consider the path <i>AC</i> , Fig. 12–23 <i>b</i> . Here the three unknowns are the time of flight t_{AC} , the horizontal distance from <i>A</i> to <i>C</i> , and the height <i>h</i> . At the maximum height $(v_C)_y = 0$, and since v_A is known, we can determine <i>h</i> directly without considering t_{AC} using the following equation.
	$(v_C)_y^2 = (v_A)_y^2 + 2a_c[y_C - y_A]$ $0^2 = (13.38 \sin 30^\circ \text{ m/s})^2 + 2(-9.81 \text{ m/s}^2)[(h - 1 \text{ m}) - 0]$
	h = 3.28 m Ans.
	NOTE: Show that the bike will strike the ground at <i>B</i> with a velocity having components of
	$(v_B)_x = 11.6 \text{ m/s} \rightarrow , (v_B)_y = 8.02 \text{ m/s} \downarrow$
C	Copyright © 2017 Pearson Education 🔗 Gau Lih Book Co., Ltd.

EXAMPLE 12.14	When the skier reaches point A along the parabolic path in Fig. $12-27a$,
	he has a speed of 6 m/s which is increasing at 2 m/s ² . Determine the direction of his velocity and the direction and magnitude of his acceleration at this instant. Neglect the size of the skier in the calculation. SOLUTION Coordinate System. Although the path has been expressed in terms of its <i>x</i> and <i>y</i> coordinates, we can still establish the origin of the <i>n</i> , <i>t</i> axes at the fixed point <i>A</i> on the path and determine the components of v
Copyright © 2017 Pearson Education	and a along these axes, Fig. 12–27 <i>a</i> .

EXAMPLE 12.15 CONTINUED
SOLUTION
Coordinate System. The origin of the n and t axes is coincident with the car at the instant considered. The t axis is in the direction of motion, and the positive n axis is directed toward the center of the circle. This coordinate system is selected since the path is known.
Acceleration. The magnitude of acceleration can be related to its components using $a = \sqrt{a_i^2 + a_n^2}$. Here $a_t = 1.5 \text{ m/s}^2$. Since $a_n = v^2/\rho$, the velocity as a function of time must be determined first.
$v_{t} = v_{0} + (a_{t})_{t}$
v = 0 + 1.5t
Thus $a_n = \frac{v^2}{\rho} = \frac{(1.5t)^2}{300} = 0.0075t^2 \mathrm{m/s^2}$
The time needed for the acceleration to reach 2 m/s ² is therefore $a = \sqrt{a_t^2 + a_n^2}$ $2 \text{ m/s}^2 = \sqrt{(1.5 \text{ m/s}^2)^2 + (0.0075t^2)^2}$
Solving for the positive value of t yields
$0.0075t^2 = \sqrt{(2 \text{ m/s}^2)^2 - (1.5 \text{ m/s}^2)^2}$
t = 13.28 s = 13.3 s Ans.
Copyright © 2017 Pearson Education 🔗 Gau Lih Book Co., Ltd.

12.9	Procedure for Analysis	articles
	The above method of relating the dependent motion of one particle to that of another can be performed using algebraic scalars or position coordinates provided each particle moves along a rectilinear path. When this is the case, only the magnitudes of the velocity and acceleration of the particles will change, not their line of direction.	
	Position-Coordinate Equation.Establish each position coordinate with an origin located at a <i>fixed</i> point or datum.	
	• It is <i>not necessary</i> that the <i>origin</i> be the <i>same</i> for each of the coordinates; however, it is <i>important</i> that each coordinate axis selected be directed along the <i>path of motion</i> of the particle.	
	• Using geometry or trigonometry, relate the position coordinates to the total length of the cord, l_T , or to that portion of cord, l , which <i>excludes</i> the segments that do not change length as the particles move—such as arc segments wrapped over pulleys.	
	• If a problem involves a <i>system</i> of two or more cords wrapped around pulleys, then the position of a point on one cord must be related to the position of a point on another cord using the above procedure. Separate equations are written for a fixed length of each cord of the system and the positions of the two particles are then related by these equations (see Examples 12.22 and 12.23).	
Copyright (then related by these equations (see Examples 12.22 and 12.23).	ook Co., Ltd.

EXAMPLE 12.21 CONTINUED	
SOLUTION	
Position-Coordinate Equation. There is one cord in this system having segments which change length. Position coordinates s_A and s_B will be used since each is measured from a fixed point (C or D) and extends along each block's path of motion. In particular, s_B is directed to point E since motion of B and E is the same. The red colored segments of the cord in Fig. 12–38 remain at a constant length and do not have to be considered as the blocks move. The remaining length of cord, l , is also constant and is related to the changing position coordinates s_A and s_B by the equation	
$s_A + 3s_B = l$	
Time Derivative. Taking the time derivative yields	
$v_A + 3v_B = 0$	
so that when $v_B = -6 \text{ m/s}$ (upward),	
$v_A = 18 \text{ m/s} \downarrow$ Ans.	
Copyright © 2017 Pearson Education	🚫 Gau Lih Book Co., Ltd.

EXAMPLE 12.2	22 CONTINUED
A and B are defined using coordinates s_A and s_B . Since the syst two cords with segments that change length, it will be necessar a third coordinate, s_C , in order to relate s_A to s_B . In other wo length of one of the cords can be expressed in terms of s_B and the length of the other cord can be expressed in terms of s_B an The red colored segments of the cords in Fig. 12–39 do not	Position-Coordinate Equation. As shown, the positions of block A and B are defined using coordinates s_A and s_B . Since the system hat two cords with segments that change length, it will be necessary to us a third coordinate, s_C , in order to relate s_A to s_B . In other words, the length of one of the cords can be expressed in terms of s_A and s_C , and the length of the other cord can be expressed in terms of s_B and s_C . The red colored segments of the cords in Fig. 12–39 do not have t be considered in the analysis. Why? For the remaining cord length say l_1 and l_2 , we have
	$v_A + 4v_B = 0$
	so that when $v_B = -6 \text{ m/s}$ (upward),
	$v_A = +24 \text{ m/s} = 24 \text{ m/s} \downarrow$ And

EXAMPLE 12.23 CONTINUED		
SOLUTION Position-Coordinate Equation. The position of point s_A , and the position of block <i>B</i> is specified by s_B since pulley will have the <i>same motion</i> as the block. Both measured from a horizontal datum passing through the f_D . Since the system consists of <i>two</i> cords, the coordinates D . Since the system consists of <i>two</i> cords, the coordinates D . Since the system consists of <i>two</i> cords, the coordinates D and D and D and D are associated directly. Instead, by establishing a third position we can now express the length of one of the cords in term and the length of the other cord in terms of s_A , s_B , and s_C . Excluding the red colored segments of the cords in remaining constant cord lengths l_1 and l_2 (along with link dimensions) can be expressed as	point E on the coordinates are eed pin at pulley s_A and s_B cannot coordinate, s_C , ms of s_B and s_C , Fig. 12–40, the	
$s_C + s_B = l_1$ $(s_A - s_C) + (s_B - s_C) + s_B = l_2$		
Time Derivative. The time derivative of each equati	on gives	
$\begin{aligned} v_C + v_B &= 0\\ v_A - 2v_C + 2v_B &= 0 \end{aligned}$		
Eliminating v_C , we obtain		
$v_A + 4v_B = 0$		
so that when $v_A = 2 \text{ m/s}$ (downward),		
$v_B = -0.5 \text{ m/s} = 0.5 \text{ m/s}$	Ans.	

