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Although each of these boats is rather large, from a distance their motion can be analyzed as if each were a
particle,
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Chapter Objectives

m To introduce the concepts of position,
displacement, velocity, and acceleration

m To study particle motion along a straight line and
represent this motion graphically

m To investigate particle motion along a curved
path using different coordinate systems

m To present an analysis of dependent motion of
two particles

m To examine the principles of relative motion of
two particles using translating axes

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.

12.1 Introduction

m Mechanics — the state of rest or motion of bodies
subjected to the action of forces

m Static — the equilibrium of a body that is either at rest
or moves with constant velocity

m Dynamics — deals with accelerated motion of a body
1) Kinematics — geometric aspects of the motion

2) Kinetics — analysis of the forces causing the motion
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12.2 Rectilinear Kinematics: Continuous Motion

m Rectilinear Kinematics — specifying the particle’s
position, velocity, and acceleration at any instant

m Position
1) Single coordinate axis, s
2) Origin, O

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.2 Rectilinear Kinematics: Continuous Motion

3) Algebraic Scalar s in meters

& §

3 |
Position
Fig. 12-1 (a)
Note : a. Magnitude of s = Dist. from O to the particle

b. Direction is defined by algebraic sign on s
- positive = right of the origin

-~ negative = left of the origin
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2024/2/27



12.2 Rectilinear Kinematics: Continuous Motion

Displacement
m  Change in its position

m If the particle moves from one point to
another, the displacement is :

Q

9]
As=s"—s g

Displacement

Fig. 12-1 (b)
When As is positive / negative,

—> particle’s finial position is right / left of its initial position

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.2 Rectilinear Kinematics: Continuous Motion

Velocity

m Average velocity, v, = As

avg At

m /nstantaneous velocity is defined as

v = lim (As/ At) v
At—0 —_—
T s
or d ? i
Vv= _S ‘ A.S' -
dt |(12-1)
Velocity
Fig. 12-1 ()
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12.2 Rectilinear Kinematics: Continuous Motion

Velocity
m Magnitude of the velocity is the speed (m/s)

m Average speed is the total distance traveled by a
particle, s, divided by the elapsed time At .

S
v, ), =35
P Javg

At

m The particle travels along the path of length s, in

time At gl
Average speed > (V o )avg =7 % ; o ==
- - :r -
Average velocity >y, = — As /.
Copyright © 2017 Pearson Education Fig- 12-1 (d)

12.2 Rectilinear Kinematics: Continuous Motion

Acceleration

o A
m Average acceleration is a,, =

t Acceleration

Fig. 12-1 (e)

m Av represents the difference in the velocity during
the time interval At, ie Av =v'-v

m [Instantaneous acceleration is a = l%gno(Av/At)

dv d 2 S
or a=— substituting Eq. 12-1 2 d = 2
dt |(12-2) dt
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.




12.2 Rectilinear Kinematics: Continuous Motion

Acceleration

m When particle is slowing down, its speed is decreasing
- decelerating > Av =v'—v will be negative.

m |t will act to the left, in the opposite sense to v

m |f the velocity is constant, the acceleration is zero.

m Relation involving the a
displacement, velocity, | S )
and acceleration along | — % %

Y ¥
the path ds dv
It =—= u Deceleration
Fig. 12-1 (f)

ads=vdv (23
Copyright © 2017 Pearsorcuucauorn & Gau Lih Book Co., Ltd.

12.2 Rectilinear Kinematics: Continuous Motion

Constant acceleration , a =a...

m Three kinematic equations, a, =dv/dt, v =ds / dt,
and a,ds = v dv.

Velocity as a Function of Time
m Integrate a. = dv / dt, assuming that initially v = v,

when ¢t = 0.
v t vV=y,+at
I dv = I a,dt .
Yo 0 Constant Acceleration| (12-4)
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12.2 Rectilinear Kinematics: Continuous Motion

When the ball is released, it has zero
velocity but an acceleration of 9.81 m/s%

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.2 Rectilinear Kinematics: Continuous Motion

Position as a Function of Time

m Integrate v = ds /dt = v, + at, assuming that
initially s = s, when ¢ = 0.

1
s=s0+v0t+5act

[Fds = [ (vy+a.)ar

Constant Acceleration| (12-5)

Velocity as a Function of Position

m Integrate v dv = a_ ds, assuming that initially
v=vy,ats=s,

V=V, +2ac(s—s0)

v s
I vdv = I a.ds _
Vo o Constant Acceleration (12-6)
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.




12.2 Rectilinear Kinematics: Continuous Motion

During the time this rocket undergoes rectilinear
motion, its altitude as a function of time can be
measured and expressed as s = s(t). Its velocity
can then be found using v =ds / dt, and its
acceleration can be determined from a=dv / dt.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.2 Rectilinear Kinematics: Continuous Motion

Procedure for Analysis

Coordinate System.

# Establish a position coordinate s along the path and specify its fived origin and positive direction.

® Since motion is along a straight line, the vector quantities position. velocity. and acceleration can be
represented as algebraic scalars. For analytical work the sense of s, v, and « is then defined by their
algebraic signs.

® The positive sense for each of these scalars can be indicated by an arrow shown alongside each Kinematic
equaltion as it is applied.

Kinematic Equations.

e I a relation is known between any two of the four variables a, v, 5. and 1. then a third variable can be
obtained by using one of the kinematic equations, @ = dv/dt, v = ds/dt or ads = vdv, since each
equaltion relates all three variables.®

* Whenever integration is performed, it is important that the position and velocity be known at a given
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits
of integration if a definite integral is used.

* Remember that Egs. 12-4 through 12-6 have only limited uvse. These equations apply only when the
acceleration is constant and the initial conditions are s = sy and v = w5 when 1 = (.

*Some dard diff iation and i ion formulas are given in Appendix A.
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The car on the left in the photo and in Fig. 12-2 moves in a straight
line such that for a short time its velocity is defined by
v = (0.6¢7 + 1) m/s, where ¢ is in seconds. Determine its position and
acceleration when t = 3s. Whent = 0,5 = 0.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE
SOLUTION

Coordinate System. The position coordinate extends from the fixed
origin O to the car, positive to the right.

Position. Since v = f(t), the car’s position can be determined from

v = ds/dt, since this equation relates v, 5, and t. Noting that s = 0
when t = 0, we have*

ds
£ = — = (0.61*
(%) v="r= (068 +1)
5 f
f ds = f (0.67 + f)dt
0 0
5 )
s| =027 + 052
0 0
s= (027 + 054)m
Whent = 3 s,
s=02(3) + 05(3)2 = 9.90m Ans.
LOpyrgntw v 1/ Fearson caucauon W Udu LIN BOOK LO., L1d.




EXAMPLE

Acceleration. Since v = f(t), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and 1.

(%) a=%=%{0.6r2+r)
= (1.2t + 1) m/s’
Whenr = 3 s,
a=12(3)+1=460m/s>— Ans.

NOTE: The formulas for constant acceleration cannot be used to solve
this problem, because the acceleration is a function of time.

*The same result can be obtained by evaluating a t of 1 ion € rather
than using definite limits on the i I. For ple, integrating ds = (0.6/* + f)dt
yields s = 0.2¢* + 0.5F + C. Using the condition that at t = 0. 5 = 0. then C = 0.

Copyright © 2017 Pearson Education
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EXAMPLE [12.2

A small projectile is fired vertically downward into a fluid medium with
an initial velocity of 60' m/s. Due to the drag resistance of the fluid the
projectile experiences a deceleration of a = (—0.4¢°) m/s”, where visin
m/s. Determine the projectile’s velocity and position 4 5 after it is fired.

Copyright © 2017 Pearson Education

Fig. 12-3
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EXAMPLE [12.2 CONTINUED
=

SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.
Velocity. Here a = fiv) and so we must determine the velocity as a
function of time using a = dv/dr,since this equation relates v, a,and 1.
(Why not use v = vy + a47) Separating the variables and integrating,
with vy, = 60 m/s when r = 0, yields

(+14) d—” = —040°

f dv f’
= [ di
com/s —0- 40 0
1
=04
1

L]

=r-0

(4.
i)
{(60} ']_:-}"”/s

Here the positive root is taken, since the projectile will continue to
move downward. Whenr = 45,
v =0559m/sl Ans.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

__________________________|
EXAMPLE |12.2 CONTINUED
Position. Knowing » = f(t), we can obtain the projectile’s position
from v = ds/dt, since this equation relates s, v, and 1. Using the initial
condition s = 0, when r = 0, we have
ds 1 i)
+1) U_E;_[(ﬁﬂ} (]8:]
ds = 08| di
f z f [(601‘ '] :
2 [ 1 ]'” !
+ 0.8t
~ 08 (60)° 0
= L{[ L + (]Sr]m = L} m
0.4 L (60)*
Whent = 45,
s =443 m Ans
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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During a test a rocket travels upward at 75 m/s, and when it is 40 m
from the ground its engine fails. Determine the maximum height s
reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s* due to gravity. Neglect the effect of air
resistance.

SOLUTION

Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12-4.

Maximum Height. Since the rocket is traveling upward,
vy = +75m/swhent = 0. At the maximum height s = s, the velocity
vg = 0. For the entire motion, the acceleration is a. = —9.81 m/s’
(negative since it acts in the opposite sense to positive velocity or
positive displacement). Since a, is constant the rocket’s position may
be related to its velocity at the two points A and B on the path by using
Eq. 12-6, namely,

+h vy = v + 2a.(s5 — 5.)
0 = (75m/s)* + 2(—9.81 m/s%)(sz — 40 m)
g = 327m Ans

& Gau Lih Book Co., Ltd.

EXAMPLE |12.3 CONTINUED

I~

vy =10

B

iy

Velocity. To obtain the velocity of the rocket just before it hits the
ground, we can apply Eq. 12-6 between points B and C, Fig. 12-4.

+h v = v} + 2a.(sc — 5p)
=0+ 2(—9.81 m/s*(0 — 327 m)
ve = —80.1 m/s = 80.1 m/s | Ans.

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C.i.e.,

+h v = v} + 2a(sc — 5,)
= (75 m/s)* + 2(—9.81 m/s2)0 — 40 m)
ve = —80.1 m/s = 80.1 m/s | Ans,

NOTE: It should be realized that the rocket is subjected to a deceleration
from A to B of 9.81 m/s*, and then from B to C it is accelerated at this
rate. Furthermore, even though the rocket momentarily comes to rest
al B (vy = 0) the acceleration at B is still 9.81 m/s* downward!

Copyright © 2017 Pearson Education
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A metallic particle is subjected to the influence of a magnetic field as
it travels downward through a fluid that extends from plate A to
plate B, Fig. 12-5.1f the particle is released from rest at the midpoint C,
s = 100 mm, and the acceleration is a = (45) m /sz, where s is in
meters, determine the velocity of the particle when it reaches plate B,
5 = 200 mm, and the time it takes to travel from C to B.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE |12.4 CONTINUED

SOLUTION
Coordinate System. Asshown in Fig. 12-5, s is positive downward,
measured from plate A.
Velocity. Since a = fis). the velocity as a function of position can
be obtained by using v dv = a ds. Realizing that v = Oats = 0.1 m, g#"
we have T = 1 |.
+h vdv = ads lntl'mm
" 5 ¥
/ i f s ds oo MM - 200 mm
(] 01 m é
A ¢ T I ——
]1:2"—4\-" b !y
q = 5 b | il | ! =
2 0o 2 loim -‘.‘i B
v =2(s* — 0.01)"*m/s (48]
Ats = 200 mm = 0.2 m,
Fig. 12-5
vp = 0.346m/s = 346 mm/s | Ans,
The positive root is chosen since the particle is traveling downward,
i.e.,in the +s direction.
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE |12.4 CONTINUED

Time. The time for the particle to travel from C to B can be obtained
using v = ds/dt and Eq. 1, where s = 0.1 m when r = 0. From

Appendix A,
(+1) ds = vdt
= 2(s* — 0.01)"2dr
X dj r
———— = | 2ds
015" — 0.01)"2 o
(Ve =001 +5)| = 2:‘
1N (]
In( V& = 001 +5) + 2303 = 2r
Ats =02m,

B In{ V(0.2)° — 0.01 + 0,2) + 2.303
- 2

NOTE: The formulas for constant acceleration cannot be used here
because the acceleration changes with position, i.e.,a = 4s,

t = (.658s Ans.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

A particle moves along a horizontal path with a velocity of
v = (3 — 6r)m/s, where ¢ is the time in seconds. If it is initially
located at the origin O, determine the distance traveled in 3.5 s, and the
particle’s average velocity and average speed during the time interval.
SOLUTION
s=—40m | s5=6.125m Coordinate System. Here positive motion is to the right, measured
=lo from the origin O, Fig. 12-6a.
[ 3 o Distance Traveled. Since v = f(r), the position as a function of time
r=72s 1=0¢ t=35% may be found by integrating v = ds/dt withr = 0,5 = 0.
(a) (_‘L'. ) ds = vdt
= (3¢ — 6 dt
L3 L
/dj = f(sf — 60 dt
o 0
s=( —3"m (1)
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE |12.5 CONTINUED

v (m/s) In order to determine the distance traveled in 3.5 s, it is necessary
v=3—6 to investigate the path of motion. If we consider a graph of the

‘ = () velocity function, Fig. 12-6b, then it reveals that for 0 < r < 25 the

(0, 0) (25.0) © velocity is negative, which means the particle is traveling to the left,

and for r = 25 the velocity is positive, and hence the particle is
traveling to the right. Also, note that » = 0 at 1 = 2 s. The particle’s
position when ¢ = 0, r = 25, and r = 3.5 s can be determined from

(1s. —=3m/s) il
) Eq. 1. This yields
Fig. 12-6 Sli=p =0 5|;=2s=—40m 5|m35=6.125m
The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is
s=40+40+6.125=14.125m = 141l m Ans.
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

|
EXAMPLE |12.5 CONTINUED

Velocity. The displacement froms = 0tor = 355sis
As = 5|,=355 — 8|=0 = 6.125m — 0 = 6.125m
and so the average velocity is
i As = 6.125 m
HESUAT A5

The average speed is defined in terms of the distance traveled sy. This
positive scalar is

= L75 I‘I‘I}l\‘l_“ Ans.

) = sro_ 14125m
PE A 355-—0

NOTE: In this problem, the acceleration is a = dv/dr = (61 — 6) m/s%,
which is not constant.

=4.04m/s Ans.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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12.3 Rectilinear Kinematics: Erratic Motion

m When a particle has erratic motion, a series of
functions will be required to specify the motion at
different intervals.

m A graph is used to described the relationship with
any two of the variables: a, v, s, t

m Weusev=ds/dt,a=dv/dtorads=vdy

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.3 Rectilinear Kinematics: Erratic Motion

5

The s-t, v-t and a-t Graphs _dsy . _ds

_ds —
%> dr|;—|: 2 J;|:;
I
.

[ _ds| | -

m To construct the v-¢ graph given il =
the s-¢ graph, v =ds /dt shouldbe || A |,
used. il

|r-.

ds {.‘:- )
— =V v
dt

Slope of s-7 graph = acceleration

m By measuring the slope on the s-¢

0

graph when ¢ = ¢,, the velocity is v,,

the v-f graph can be constructed.  Fig. 127 ®
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.3 Rectilinear Kinematics: Erratic Motion

The s-t, v-t and a-t Graphs

m When the particle’s v-f graph is
known, the a-t graph can be
determined using a = dv / dt

dv
—=a
dt

Slope of v-t graph = acceleration

Fig. 12-8 (b)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.3 Rectilinear Kinematics: Erratic Motion

The s-t, v-t and a-t Graphs

m When a—t graph is given, v— can
be written as

Av=_[adt

change in velocity = area under a-f graph

Fig. 12-9 ®)

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.3 Rectilinear Kinematics: Erratic Motion

The s-t, v-t and a-t Graphs

m When v—¢ graph is given, s—¢ can
be written as

As=jvdt

displacement = area under v-f graph

h

Fig. 12-10 (b)

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.3 Rectilinear Kinematics: Erratic Motion

The v-s and a-s Graphs

m If the a—s graph can be
constructed, then we have :

(a)

1 (.2 A
7(v1—v0)—j a ds

So

L1
area under
a-s graph
5
Fig. 12-11 ™
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.3 Rectilinear Kinematics: Erratic Motion

The v-s and a-s Graphs

m When v—s graph is known, a at any
position s can be written as

(dv) o .<-... |
a=vl —
ds !

Acceleration = velocity times slope
of v-s graph

a = vide/ds)

5 -

Fig. 12-12 (&
& Gau Lih Book Co., Ltd.
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A bicycle moves along a straight road such that its position is described

by the graph shown in Fig. 12-13a. Construct the v—t and a— graphs
for0 =t = 30s.

5 (m)

s=~6t—30

30 —|

1(s)

(a)

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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EXAMPLE | 12.6 CONTINUED

SOLUTION

v-t Graph. Since v = ds/dt, the v—t graph can be determined by

differentiating the equations defining the s— graph, Fig. 12-13a. We have
0=1<10s; s = (03r*)m v=%={0.m)m;’s

i ds

10s < t = 30s; s = (6t — 30) m 1;=E=6m/s

The results are plotted in Fig. 12-13b. We can also obtain specific

values of v by measuring the slope of the s—f graph at a given instant.

For example, at + = 20 s, the slope of the s—f graph is determined from

the straight line from 10s to 30 s,i.e.,

_E_ljom—&om

=T a0s—10s O™/

t=20s;

v(mfs)

!}?0.6! v=6

6

1(s)

(b}

Copyright © 2017 Pearson Education
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12.6 CONTINUED

a(mp)

a-t Graph. Since a = dv/dt. the a-f graph can be determined by
differentiating the equations defining the lines of the v—t graph.
This yields

B B _dv 3
0=1t<10s: = (0.6r) m/s 8=y 0.6m/s

=—=0
dr

10 <t = 30s; v =6m/s a
The results are plotted in Fig. 12-13¢.

NOTE: Show that a = 0.6 m)s2 when t = 5 s by measuring the slope
of the v graph.

1(s)
(€)

Fig. 12-13

Copyright © 2017 Pearson Education
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a (m/s)
10

Ay

s

Hs)
5 10 Ay |
{a)

v{m/s)

Copyright © 2017 Pearson Education

The car in Fig. 12-14a starts from rest and travels along a straight track
such that it accelerates at 10 m/s* for 10 s, and then decelerates at
2 m/s%. Draw the v—r and s—f graphs and determine the time 1’ needed
to stop the car. How far has the car traveled?

SOLUTION

v-t Graph. Since dv = adi, the v—r graph is determined by
integrating the straight-line segments of the a— graph. Using the initial
condition v = 0 when t = 0, we have

L] T
0=:<10s; a=(l0)m/s; fdu= /mm. v = 10
0 o

When 1= 10s, » = 10(10) = 100 m/s. Using this as the initial
condition for the next time period, we have

" ’
msc;s;‘:a=t—2}m;s%/ d'v=f —2dnv = (=2 + 120)m/s
100 my's 10s

When r = 1" we require v = 0. This yields, Fig. 12-14b,
1'=60s \ns
A more direct solution for 1" is possible by realizing that the area
under the a— graph is equal to the change in the car’s velocity. We
require Av = 0 = A, + A,, Fig. 12-14a. Thus
0= 10m/s%(10s) + (=2 m/s)(1" — 10s)
1= 60s Ans.

& Gau Lih Book Co., Ltd.

EXAMPLE [12.7 CONTINUED

L
10 ol 2!
©

Fig. 12-14

0s=t=60s5,v

s-t Graph. Since ds = vdr, integrating the equations of the
vt graph yields the corresponding equations of the s—t graph. Using
the initial condition s = 0 when 1 = 0, we have

0=t=10s; »=(l10)m/s; fd,w = flﬂrd.'. s=(5m
0 0

When t = 105, s = 5(10)° = 500 m. Using this initial condition,

(=2t + 120) m;s:f ds = f (=2t + 120) di
10

500 m I s
§ =500 = =7 + 1200 — [—(10)* + 120(10)]
s =(=F 4+ 120r = 600) m
When 1 = 60 s, the position is
s = —(60)" + 120(60) — 600 = 3000 m Ans,
The s—t graph is shown in Fig. 12-14c.

]

NOTE: A direct solution for s is possible when 1" = 60 s, since the
friangular area under the v-r graph would yield the displacement
As =5 — 0fromt = 0tot' = 60s. Hence,

As = (60 s)(100 m/s) = 3000 m Ans.

Copyright © 2017 Pearson Education
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EXAMPLE | 12.8

The v—s graph describing the motion of a motorcycle is shown in
Fig. 12-15a. Construct the a—s graph of the motion and determine the
time needed for the motorcycle to reach the position s = 160 m.

SOLUTION

a-s Graph. Since the equations for segments of the v—s graph are
given, the a—s graph can be determined using a ds = v dv.

0=ys< 80m; v=(02s + 4m/s
dv d
=p—=(02s + 4)—(02s + 4) = 0.04s + 0.8
a=vor = )7 ) = 004s
80m < 5 = 160 m; v =20m/s
dv d
=v— = (20)—(20) = 0
a = v = (20)--(20)

The results are plotted in Fig. 12-15bh.

Copyright © 2017 Pearson Education

v (mjs)

v=02s+4
v=20

(a)

5 (m)

& Gau Lih Book Co., Ltd.

EXAMPLE | 12.8 CONTINUED

Time. The time can be obtained using the v—s graph and v = ds/dt,
because this equation relates v, s, and t. For the first segment of
motion,s = Owhenr = 0, so

ds ds

0=s5<80m; v = (025 + 4)m/s; dr=;=0.25+4

1] 5 dj
/Dd' = /; 02 + 4
L [5 1n(0,254+ 4)] .

0.2(80) + 4 )
Als=80m.c=3 M[T] = 8.047 5. Therefore, using these

initiaf conditions for the second segment of motion,
ds ds

80 < 5 = 160 m; =20 : dt = — = —
m < s m v m/s: . 20

f 5

d:
fowit= L5
B4Ts &szn

= n=(lEL
1 — 8.047 20 4 1 (20+4.D47)s

Therefore,ats = 160 m,
160

‘=%

+ 4047 = 12058 Ans.

a(m/s’)

Fig. 12-15

5({m)

Copyright © 2017 Pearson Education
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EXAMPLE | 12.8 CONTINUED

0.2(80) + 4
]

Ats =80 m,t=5In = 8.047 5. Therefore, using these

initial conditions for the second segment of motion,

d d.
80m < s = 160 m; v =20m/s; == :

f ! it f T ds
dr = Y
80475 som 20

5 5
.'—8,04?—5—4. :—(—D—.4,04?)s

v 20

Therefore, at s = 160 m,

160
t=>5 4.047 = 12.0s Ans.
NOTE: The graphical results can be checked in part by calculating slopes.
For example, at s = 0, a = v(dv/ds) = 4(20 — 4)/80 = 0.8 m/s’.
Also, the results can be checked in part by inspection. The »—s graph
indicates the initial increase in velocity (acceleration) followed by
constant velocity (a = 0).

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.4 General Curvilinear Motion

m Curvilinear motion occurs when a particle moves
along a curved path

Position

m measured from a fixed point O, by the position
vectorr =r(t)

Position

P:t;th
Fig. 12-16  (a)

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.4 General Curvilinear Motion

Displacement

m During a small time interval At the particle moves a
distance As along the curve to a new position,

defined by r’ =r + Ar

m The displacement Ar represents the change in the
particle’s position > Ar=r’-r

Displacement

Fig. 12-16 (b)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.4 General Curvilinear Motion

Velocity )
m Average velocity of the particle is : Velocity
AT Fig. 12-16 ()
Vav = -
£ At

m Instantaneous velocity is determined by letting A = 0,

i
vV=—
dt 27

m Approaches the arc length As as At 2 0, we have :
ds
v =

Copyright © 2017 Pearson Education dt (12-8) & Gau Lih Book Co., Ltd.
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12.4 General Curvilinear Motion

Acceleration

m The average acceleration during the time interval At

® A av ?
\"
_ a— N d’r

=7 a—
avg At 2
dt (12.9) dt

m a acts tangent to the hodograph and is not tangent to
the path of motion

N A T o

Acceleration path

Fig. 12-16
(d) (¢) (r) (g)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.5 Curvilinear Motion: Rectangular Components

Position
m Location is defined by the position vector

r=xi+yj+zk ‘ (12-10)

m The magnitude of r is defined as : 7 =+/x" +y* +z°

m The direction of ris specified by the unit vector
u,=r/r. '

Copyright © 2017 Pearson Education Fig. 12-17
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12.5 Curvilinear Motion: Rectangular Components

Velocity
m The first time derivative of r yields the velocity :

ar _d, .. d, .. d
== S (xi)+ (i) + - (k
V== )+ (i) - (2k)

m The derivative of the i component of r is :

d .\ dx. di
= (xi)="i+x—
dt dt dt ' 0\
m The final result : . R
dr . . '
V=—=vi+v j+vk i
dt (12-11) Velocity
A i . Fig. 12-17 (h)
where | p, = & W= V=1 g,
Copyright © 2 & Gau Lih Book Co., Ltd.

12.5 Curvilinear Motion: Rectangular Components

Velocity

m The velocity has a magnitude that is found from :
v= v+ +v!

m has a direction specified by the unit vector u = v/v
and is always tangent to the path

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.5 Curvilinear Motion: Rectangular Components

Acceleration .

Q.

m We have a ..
a=—=aji+aj+ak o s
dt (12-13) s~
a=ai+ajtak
where
X
ax 'i)x = _X,' Acceleration
. .. Fig. 12-17 ()
a_V = ’l)v = ).‘
a, = v, = 7 | (1214)

m The acceleration has a magnitude

_ 2 2 2
a=.la;+a;,+a;

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.5 Curvilinear Motion: Rectangular Components

Coordinate System.

e A rectangular coordinate system can be used to solve problems
for which the motion can conveniently be expressed in terms of
its x, y, £ components.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.5 Curvilinear Motion: Rectangular Components

Kinematic Quantities.

e Since rectilinear motion occurs along each coordinate axis, the
motion along each axis is found using v = ds/dt and a = dv/dt;
or in cases where the motion is not expressed as a function of
time, the equation a ds = v dv can be used.

In two dimensions, the equation of the path y = f(x) can be used
to relate the x and y components of velocity and acceleration by
applying the chain rule of calculus. A review of this concept is
given in Appendix C.

Once the x, vy, z components of v and a have been determined, the
magnitudes of these vectors are found from the Pythagorean
theorem, Eq. B-3, and their coordinate direction angles from the
components of their unit vectors, Eqs. B-4 and B-5.

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.

2024/2/27

EXAMPLE | 12.9 |

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (2r) m. where [ is in seconds. If the
equation of the path is y = x°/5, determine the magnitude and
direction of the velocity and the acceleration whenr = 2s.
SOLUTION

Velocity. The velocity component in the x direction is
v X d (26) = 2m/s
1 = & = —(2) = —
dt

To find the relationship between the velocity components we will use the
chain rule of calculus When ¢ = 2s, x = 2(2) = 4 m, Fig. 12-18a, and so

v, =y = %(.rl/SJ = 2k /5 = 2(4)(2)/5 = 3.20m/s T
When 1 = 2 s, the magnitude of velocity is therefore
v =V@m/s) + (320m/s) = 37T m/fs Ans.
The direction is tangent to the path, Fig. 12-18b, where
1Y 3.20

— = tan!
v, 2

a

. = tan = 58.0¢ Ans

v=3TTmp
8, = S8.0°
By ——

Copyright © 2017 Pearson Education
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exavpLe [ tzsconmvuen

Acceleration. The refationship between the acceleration components
is determined using the chain rule. (See Appendix C.) We have

b= Loy =
ay =9 = d‘(Z) =0
a, = b, = %(2&/5) = 2(x)x/5 + 2x(¥)/5

= 2(2)%/5 + 2(4)(0)/5 = 1.60 m/s* |

Thus,
a = 1.60m
a = V(0)* + (1.60)* = 1.60m/s* Ans. 8, = 90°
The direction of a, as shown in Fig. 12-18c, is B
(©)
1.60
8, = tan"T = 9 Ans. Fig. 12-18

NOTE: It is also possible to obtain v, and a, by first expressing
¥ = f(r) = (21)*/5 = 0.8¢ and then taking successive time derivatives.

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.

(@ R.C. Hibbeler)

For a short time, the path of the plane in Fig. 12-19a is described by
¥ = (0.001:%) m. If the plane is rising with a constant upward velocity of
10 m/s, determine the magnitudes of the velocity and acceleration of the
plane when it reaches an altitude of y = 100 m.

SOLUTION
When y = 100 m, then 100 = 0.001x> or x = 316.2 m. Also, due to
constant velocity », = 10 m/s, so

y =t 100m = (10m/s) ¢ 1= 10s

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.
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EXAMPLE | 12.10 CONTINUED

Velocity. Using the chain rule (see Appendix C) to find the
relationship between the velocity components, we have

y = 00015
vy=3= %(0.00|x3) = (0.002¢)k = 0.002xv, (1)
Thus
Sy =001 10m/s = 0.002(316.2 m)(v,)
100m| > > v, = 1581 m/s
7 * The magnitude of the velocity is therefore
(@) v="Vvl+1 = V(581 m/sy + (10m/s)> = 18T m/s  Ans
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.10 CONTINUED

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

a, = b, = (0.0020)k + 0.002x(x) = 0.002(v; + xa,)
When x = 3162m, v, = 1581 m/s, ¥, = a, = 0,

Ly 0 = 0.002[(15.81 m/s)* + 316.2 m(a,)]

v i
W T a, = —0.791 m/s*

lwmi. l + The magnitude of the plane’s acceleration is therefore
i a=Vd +a = V(=019 m/s) + (0 m/s)
Fig. 12-19 = 0.791 m/s’ Ans,
These results are shown in Fig. 12-19h.
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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12.6 Motion of Projectile

m Projectile launched at (x,, y,)

m Air resistance is neglected

m Only force is its weight downwards

m g, =g=981m/s

Fig. 12-20
Copyright © 2017 Pearson Education
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12.6 Motion of Projectile

Copyright © 2017 Pearson Education

Each picture in this sequence is taken after the
same time interval. The red ball falls from rest,
whereas the yellow ball is given a horizontal
velocity when released. Both balls accelerate
downward at the same rate, and so they remain
at the same elevation at any instant.

This acceleration causes the difference in elevation
between the balls to increase between successive
photos. Also, note the horizontal distance
between successive photos of the
yellow ball is constant since the velocity in the
horizontal direction remains constant.

& Gau Lih Book Co., Ltd.
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12.6 Motion of Projectile

Horizontal Motion

m Since a, =0,

5] v=v, +at; v.=(v,),

1
5] x:x0+v0t+5act2; x=x,+(vy).t
5] vi=ve+2a,(x-x,); v, =),

m Horizontal component of velocity always remain
constant during the motion

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.6 Motion of Projectile

Vertical Motion

m Positive y axis is upward, then a,=-g

(+T) v:v0+act; vyz(vo)y—gt
1 1
(+1) y=yo+vot+5act2; y=yo+(vo)yt—5gt2

61 v:=vZ+2a,(y—y,): vi=(vy) =28y -y,

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.6 Motion of Projectile

Copyright © 2017 Pearson Education

Coordinate System.

e Establish the fixed x, y coordinate axes and sketch the trajectory
of the particle. Between any two points on the path specity the
given problem data and identify the three unknowns. In all cases
the acceleration of gravity acts downward and equals 9.81 m/sz.
The particle’s initial and final velocities should be represented in
terms of their x and y components.

e Remember that positive and negative position, velocity, and
acceleration components always act in accordance with their
associated coordinate directions.

& Gau Lih Book Co., Ltd.

12.¢

Copyrigh

Kinematic Equations.
® Depending upon the known data and what is to be determined, a

choice should be made as to which three of the following four
equations should be applied between the two points on the path
to obtain the most direct solution to the problem.

Horizontal Motion.
e The velocity in the horizontal or x direction is constant, i.e.,

v, = (vg),, and

X = Xxg + (o)t

Vertical Motion.
e In the vertical or y direction only fwo of the following three

equations can be used for solution.
v, = (vg)y + a.t
¥y =7y + {v(,)_‘.t + %acl‘:Z

(wo)y + 2ac(y = yo)

For example. if the particle’s final velocity v, is not needed, then
the first and third of these equations will not be useful.

Co., Ltd.

2024/2/27

33



12.6 Motion of Projectile

Once thrown, the basketball follows a

parabolic trajectory.

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.

12.6 Motion of Projectile

Gravel falling off the end of this conveyor belt
follows a path that can be predicted using the
equations of constant acceleration.

In this way the location of the accumulated
pile can be determined. Rectangular coordinates
are used for the analysis since the acceleration

is only in the vertical direction.

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.
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EXAMPLE | 12.11

A sack slides off the ramp, shown in Fig. 12-21, with a horizontal
velocity of 12m/s. If the height of the ramp is 6 m from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

Fig. 12-21

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.11 CONTINUED

SOLUTION

Coordinate System. The origin of coordinates is established at the
beginning of the path, point A, Fig. 12-21. The initial velocity of a sack
has components (v,), = 12m/sand (v,), = 0. Also, between points A
and Bthe accelerationisa, = —9.81 m/s*.Since (vg), = (v4), = 12 m/s,
the three unknowns are (), R, and the time of flight 1,;. Here we do
not need to determine (vy),.

Vertical Motion. The vertical distance from A to B is known, and
therefore we can obtain a direct solution for 1,5 by using the equation

+1 Yo =Y+ (s + badip
—6m =0+ 0+ H-981 m/s))i,
g = lL1ls Ans.

Horizental Motion. Since 1,5 has been calculated, R is determined
as follows:
(&) xg = Xy F (Wpidap

R=0+ 12m/s(1.115)

R=133m Ans.

NOTE: The caleulation for 1,5 also indicates that if a sack were released
from rest at A, it would take the same amount of time to strike the
floor at C, Fig. 12-21.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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|ExampLE (2.2 SR

Copyright © 2017 Pearson Education

The chipping machine is designed to eject wood chipsat vy = 7.5 m/s
asshownin Fig. 12-22.If the tube is oriented at 30° from the horizontal,
determine how high, A, the chips strike the pile if at this instant they
land on the pile 6 m from the tube.

Fig. 12-22

& Gau Lih Book Co., Ltd.

EXAMPLE | 12:12 CONTINUED

SOLUTION

Coordinate System. When the motion is analyzed between points O
and A, the three unknowns are the height h, time of flight #,, and
vertical component of velocity (v,),. [Note that (vy), = (vg),.] With
the origin of coordinates at O, Fig, 12-22, the initial velocity of a chip
has components of

(vo)y = (7.5¢c0s30°) m/s = 6.50 m/s —
(vo)y = (7.55in 30°) m/s =375m/s]

Also, (#4), = (¥p), = 6.50m/s and a, = —9.81 m/s. Since we do
not need to determine (v,),. we have

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.
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EXAMPLE | 12.12 CONTINUED

Horizontal Motion.

() X4 = xp + (Vg)ton
6m =0+ (6.50m/s)to
toqa = 0923 s

Vertical Motion. Relating fg, to the initial and final elevations of a
chip, we have

(+1) ya=yo + (Woltos + Ya thy
(h— 12m) =0 + (3.75 m/8)(0.923 8) + 3(—9.81 m/s?)(0.923 s)*
h=0483m Ans.

NOTE: We can determine (v,), by using (v4)y = (voly + actoy-

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.13 |

The track for this racing event was designed so that riders jump off the
slope at 307, from a height of 1 m. During a race it was observed that
the rider shown in Fig. 12-23a remained in mid air for 1.5 s. Determine
the speed at which he was traveling off the ramp, the horizontal
distance he travels before striking the ground, and the maximum
height he attains. Neglect the size of the bike and rider.

(© R.C. Hibbeler)

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE | 12.13 CONTINUED

SOLUTION ¥
Coordinate System. As shown in Fig. 12-23b, the origin of the
coordinates is established at A. Between the end points of the path AB i c
the three unknowns are the initial speed v, range R, and the vertical G
component of velocity (vg),. AT It R "
; i B
Vertical Motion. Since the time of flight and the vertical distance
between the ends of the path are known, we can determine v,. u R -‘
+h Y = ¥+ (Wahdan + %“r’f‘m (b)
= — 2 o L 2 7!
Im =0+ v,;s5in30°(1.5s) + 3(—=9.81 m/s°)(1.55) Fig. 12-23
vy = 1338 m/s = 134m/s Ans.
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

|
EXAMPLE | 12.13 CONTINUED

Horizontal Motion. The range R can now be determined.

(B) xp = x4 + (U )dun
R =0+ 1338cos30°m/s(1.55)
= 174m Ans.

In order to find the maximum height /i we will consider the path AC,
Fig. 12-23b. Here the three unknowns are the time of flight 1,¢, the
horizontal distance from A to C, and the height h. At the maximum
height (v¢), = 0, and since v, is known, we can determine h directly
without considering 1, using the following equation.

el = (0 + 2alyc =yl
0% = (13.38 sin 30° m/s)* + 2(—9.81 m/s")[(h — 1 m) — 0]

h=328m Ans.
NOTE: Show that the bike will strike the ground at B with a velocity
having components of

(vg), = 11.6m/s—, (vy), = 8.02 m/sh

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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12.7 Curvilinear Motion: Normal and Tangential Components

m Path of motion is describe using n and t coordinate
axes which act normal and tangent to the path

m At the instant considered have their origin located at
the particle

. ?
Planar Motion y
0 A
m Origin happens to coincide \\
with the location of the particle RSN
Position
Fig. 12-24 (a)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.7 Curvilinear Motion: Normal and Tangential Components

Planar Motion

m Curve is constructed from a series of differential arc
segments ds

m The plane contains the n and t axis is referred to as
osculating plane and is fixed in the plane of motion

ds P

ds

Radius of curvature

Copyright © 2017 Pearson Education Fig. 12-24 o Ky sau Lin BOOK Lo., Lid.
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12.7 Curvilinear Motion: Normal and Tangential Components

Velocity
m Since the particle moves, s is a function of time

m Particle’s velocity v has a direction that is always
tangent to the path

m Magnitude is determined by taking the time
derivative of the path function s = s() 4

V=vU, 1545

where V= §

(12-16) Velocity

Fig.12-24  ©
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

dft

12.7 Curvilinear Motion: No I

W,
\\ u,

~ci.ds

Acceleration

(d)

m Acceleration of the particle is the
time rate of change of the velocity

a=v=7ou +ova (@117

m a can be written as

Acceleration

a=aU,+au Fig. 12-24 )

" (12-18)

2
. v
Where | a, = v |or |lads=vd and |a,=—
t ads=vdv 7| o)

. . . 2 2
m Magnitude of accelerationis : a = \Ja; + a, (@22

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.7 Curvilinear Motion: Normal and Tangential Components

Two special cases of motion

m [f the particle moves along a straight line, then p - « and from
Eq. 12-20, a, = 0. Thus a = a, =v, and we can conclude that
the tangential component of acceleration represents the time
rate of change in the magnitude of the velocity.

m [f the particle moves along a curve with a constant speed, then
a,= v.=0and a=a,=V*/p. Therefore, the normal component
of acceleration represents the time rate of change in the
direction of the velocity.

Since a, always acts towards the center of curvature, this
component is sometimes referred to as the centripetal

acceleration.
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.7 Curvilinear Motion: Normal and Tangential Components

m A particle moving along the curved path in Fig. 12-25
will have accelerations directed as shown.

Change in
dircction of
velocity )
Increasing
_ c_ .:i i: E g a,
speed

Sl
Change in
. magnitude of
Fig. 12-25 velocity
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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Figure: 12 PHOOG

As the boy swings upward with a velocity v, his motion can be analyzed using n—/ coordinates. As he
rises, the magnitude of his velocity (speed) is decreasing, and so a will be negative. The rate at which
the direction of his velocity changes is a , which is always positive, that is, towards the center of rotation.

ot 1) P ek s, b o P Wl

Copyright © 2017 Pearson Education
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12.7 Curvilinear Motion: Normal and Tangential
Components

Three-Dimensional Motion.

m Three unit vectors: U,, U,, U,

m Three unit vectors are related to one another by
the vector cross product,e.g. u, =u, xu,

b osculating plane

Fig. 12-26
Copyright © 2017 Pearson Education
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12.7 Curvilinear Motion: Normal and Tangential Components

Coordinate System.

e Provided the path of the particle is known, we can establish a set
of n and t coordinates having a fixed origin, which is coincident
with the particle at the instant considered.

e The positive tangent axis acts in the direction of motion and the
positive normal axis is directed toward the path’s center of
curvature.

Velocity.

e The particle’s velocity is always tangent to the path.
¢ The magnitude of velocity is found from the time derivative of
the path function.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.7 Curvilinear Motion: Normal and Tangential Components

Tangential Acceleration.

e The tangential component of acceleration is the result of the time
rate of change in the magnitude of velocity. This component acts
in the positive s direction if the particle’s speed is increasing or in
the opposite direction if the speed is decreasing.

e The relations between g, v, 1. and s are the same as for rectilinear
motion, namely,

a,=v ads=vdv

e If g, is constant, a; = (a,).. the above equations, when integrated,

yield
=5 + vt + 'i(a,)fzz
v =1y + (a)d
v: = v} + 2a) (s — 5
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.7 Curvilinear Motion: Normal and Tangential Components

Normal Acceleration.

® The normal component of acceleration is the result of the time
rate of change in the direction of the velocity. This component is
always directed toward the center of curvature of the path, i.e.,
along the positive n axis.

e The magnitude of this component is determined from

o=
"oop

e If the path is expressed as y = f{x). the radius of curvature p at
any point on the path is determined from the equation

1+ (dy/dn)?
P | dy/ard]

The derivation of this result is given in any standard calculus text.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.7 Curvilinear Motion: Normal and Tangential Components

Once the rotation is constant, the riders will
then have only a normal component of
acceleration.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.7 Curvilinear Motion: Normal and Tangential Components

Motorists traveling along this cloverleaf interchange
experience a normal acceleration due to the
change in direction of their velocity. A tangential
component of acceleration occurs when the
cars'speed is increased or decreased.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE [12.14

When the skier reaches point A along the parabolic path in Fig. 12-27a,
he has a speed of 6 m/s which is increasing at 2 m/s. Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System.  Although the path has been expressed in terms
of its.x and y coordinates, we can still establish the origin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

45



EXAMPLE | 12.14 CONTINUED

Velocity. By definition, the velocity is always directed tangent to
the path. Since y = 5%, dy/dx = 5, then at x = 10 m, dy/dx = 1.

Hence, at A, v makes an angle of # = tan™'1 = 45° with the x axis,
Fig. 12-27b. Therefore,
0 e vy =6m/is 45°F Ans.

The acceleration is determined from a = du, + (v*/p)u,. However, it
is first necessary to determine the radius of curvature of the path at A

(10 m, 5 m). Since d®v/dx¥* = {5, then
[0+ @y/de?P?  [1+ (%)% 2o
p= = = 2828 m
| dy/dv| |31 Le=tom
The acceleration becomes
a, = i, + ﬂ—:u
L 1om | A ATy
(6m/s)*
= +
@ 2t g m ™
= {2u, + 1.273u, } m/s’
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE |12.14 CONTINUED

As shown in Fig. 12-27b,

1273 m/s* a=V@ m/s?) + (1273 m/s?) = 237 m/s*
Jov°
4 = e — = 7.5°
pwEm o
Thus, 45° + 90° + 57.5° — 180" = 12.5° so that,
a=23Tm/s* 125°F Ans.
¥ {h]’ 5 NOTE: By using n, ¢ coordinates, we were able to readily solve this
Mg 12-2( problem through the use of Eq. 12-18, since it accounts for the
separate changes in the magnitude and direction of v.
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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A race car C travels around the horizontal circular track that has a
radius of 300 m, Fig. 12-28. If the car increases its speed at a constant
rate of 1.5 m /s, starting from rest, determine the time needed for it to
reach an acceleration of 2 m/s’. What is its speed at this instant?

Fig. 12-28

Copyright © 2017 Pearson Education
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EXAMPLE | 12.15 CONTINUED

SOLUTION

Coordinate System. The origin of the n and  axes is coincident with
the car at the instant considered. The 1 axis is in the direction of motion,
and the positive n axis is directed toward the center of the circle. This
coordinate system is selected since the path is known.

Acceleration. The magnitude of acceleration can be related to its
components using a = Va; + ai. Here a, = 1.5m/s>. Since
a, = v*/p, the velocity as a function of time must be determined first.

v =1+ (a)s
=0+ 15
Thus
2 (15n?
an =2 =L o0semys

The time needed for the acceleration to reach 2 m/s’ is therefore
a=Va +a
2m/s' = V(15m/s) + (000757)
Solving for the positive value of 1 yields
000752 = V(2 m/s5)? — (1.5 m/s5

t=1328s = 1335 Ans.

Copyright © 2017 Pearson Education
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EXAMPLE | 12.15 CONTINUED

The time needed for the acceleration to reach 2 m/s” is therefore

= v/t 2
a = ay — dy

2m/st = V(1.5 m/s?) + (0.00752)

Solving for the positive value of 1 yields

0.0075¢ = V(2 m/s’)> — (1.5 m/s%)?

r=1328s = 13.3s Ans.
Velocity. The speed at time ¢ = 13.28 s is
v = 1.5t = 1.5(13.28) = 199 m/s Ans.

NOTE: Remember the velocity will always be tangent to the path,
whereas the acceleration will be directed within the curvature of the path.

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.

|
EXAMPLE

(© R.C. Hibbeler)

Copyright © 2017 Pearson Education

The boxes in Fig. 12-29a travel along the industrial conveyor. If a box
as in Fig. 12-29b starts from rest at A and increases its speed such that
a, = (0.2r) m/s°, where 1 is in seconds, determine the magnitude of its
acceleration when it arrives at point B.

SOLUTION

Coordinate System. The position of the box at any instant is defined
from the fixed point A using the position or path coordinate s,
Fig. 12-29h. The acceleration is to be determined at B, so the origin of
the n, t axes is at this point.

& Gau Lih Book Co., Ltd.

2024/2/27

48



EXAMPLE |12.16 CONTINUED

Acceleration. To determine the acceleration components a, = ¥
and a, = v*/p, it is first necessary to formulate v and  so that they
may be evaluated at B. Since v, = 0 when ¢ = 0, then

a=1b=02 (1)
” 18
/ dv = [ 0.2t dr
i i
v =017 (2)

The time needed for the box to reach point B can be determined by
realizing that the position of B is 55 = 3 + 27(2)/4 = 6.142m,
Fig. 12-29b, and since s, = 0 when r = 0 we have

ds 2

===017
dr

6142 Iy
f ds = f 0.18dr
i (1]

6.142 m = 0.03331}
1g = 5.690s

v

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE |12.16 CONTINUED

Substituting into Egs. 1 and 2 yields
(ag), = g = 0.2(5.690) = 1.138 m/s’
vy = 0.1(5.69) = 3.238m/s

AL B, py = 2m, so that
_vp (3238 m/s)

(ag), = o e = 5242 m/s"

1138 m/s ) .
The magnitude of ag, Fig. 12-29c¢, is therefore
()
Fig. 12-29 ag = V(1138 m/s)? + (5.242m/s)? = 536 m/s  Ans
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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12.8 Curvilinear Motion: Cylindrical Components

Polar Coordinates

m Location of the particle use both the radial

coordinate r and a traverse coordinate 6
which is counterclockwise angle

m Angle measured in degrees or radians
where 1 rad = 180°/xn \

o
Position i "
m At any instant, position defined /
by the position vector Posiion
r=ru . Fig. 12-30 (a)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.8 Curvilinear Motion: Cylindrical Components

Velocity

m Instantaneous velocity v is obtained by the time
derivative of r

V=r1=iu, + ra,

m A change A0 will cause u, to become u,” where

Ur’ = u,,. + Aur u,.\% Au,
m For small angles A, Au. = Abu, Ty,

A#
. Au, [ A# Fig. 12-30 (b)
W= Ay \ A )
L5 (12-23)
Copyright € u, = tug
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12.8 Curvilinear Motion: Cylindrical Components

Velocity

v, =7
m We have v=v,u, + vau@‘ (12-24) where fUr = B
L=

(12-25)

m Since Vv, and v, are mutually perpendicular,

v = V(iR + (10)?  (1226)

m Direction of v is tangent to the path

(0]
Velocity

_ , Fig. 12-30  (0)
Copyright © 2017 Pearson Education &y Gau Lih Book Co., Lid.

12.8 Curvilinear Motion: Cylindrical Components

Acceleration
m Taking the time derivatives, we obtain :
a=v=ru +m,+ iu, + rou, + rdu,

m For small angles, Au,= - Abu,

m Thus,
Auy
. 1i Aue 1i Ad uy
U — Ihm —/— = — m —— ju
87 A0 Af A—0 Ar ) w'y\ e
N, u,
. : Af
uy; = —6fu, (12-27)
Fig. 12-30  (d)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.8 Curvilinear Motion: Cylindrical Components

Acceleration
m We can write the acceleration in component form as

— 92 N2
a= arur + Clgug (12-28) where a, = r — 0
dg — rd + 210 (12-29)

m Since a, and a, are always perpendicular

a= NG — ) + (8 + 277 1230

m Acceleration will not /\ar//

be tangent to the path 0

Acceleration
Fig. 12-30 ()

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.8 Curvilinear Motion: Cylindrical Components

Cylindrical Coordinates

m When the particle moves along a space, location is
specified by the three cylindrical coordinates r, 6, z

m Position, velocity, acceleration of the particle is ..
written as
rp = ru, + zu,
v =ju, + rfuy + Zu, (12-31)

a=(— i, + (rf + 2i)u,y + 7u, (12:32)

Fig. 12-31

Copyright © 2017 Pearson Education Y du LIN BOOK LO., L.
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12.8 Curvilinear Motion: Cylindrical Components

Time Derivatives

2 common problems:

1. If the polar coordinates are specified as r = r(t) and

6 = O(t), time derivatives can be found directly.

2. If the time-parametric equations are not given, the

path r = f(6) must be known and using the chain rule

of calculus can find the relation between the time
derivatives.

Copyright © 2017 Pearson Education

& Gau Lih Book Co., Ltd.

12.5.

Coordinate System.

Polar coordinates are a suitable choice for solving problems when
data regarding the angular motion of the radial coordinate r is
given to describe the particle’s motion. Also, some paths of motion
can conveniently be described in terms of these coordinates.

To use polar coordinates, the origin is established at a fixed point,

and the radial line r is directed to the particle.

The transverse coordinate # is measured from a fixed reference
line to the radial line.

Velocity and Acceleration.

Once r and the four time derivatives r, 7. 8, and # have been
evaluated at the instant considered, their values can be substituted
into Eqgs. 12-25 and 12-29 to obtain the radial and transverse
components of v and a.

If it is necessary to take the time derivatives of r = fi#), then the
chain rule of calculus must be used. See Appendix C.

Motion in three dimensions requires a simple extension of the
above procedure to include z and Z.

Copyrigh. < —. ..
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12.8 Curvilinear Motion: Cylindrical Components

The spiral motion of this girl can be
followed by using cylindrical components.
Here the radial coordinate r is constant,
the transverse coordinate 8 will increase
with time as the girl rotates about the
vertical, and her altitude zwill decrease
with time.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.17

The amusement park ride shown in Fig. 12-32qa consists of a chair that
is rotating in a horizontal circular path of radius r such that the arm OB
has an angular velocity # and angular acceleration #. Determine the
radial and transverse components of velocity and acceleration of the
passenger. Neglect his size in the calculation.

(a) (b)
Fig. 12-32

SOLUTION

Coordinate System. Since the angular motion of the arm is
reported, polar coordinates are chosen for the solution, Fig. 12-32a.
Here # is not related to r, since the radius is constant for all 6.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE | 12.17 CONTINUED

Velocity and Acceleration. It is first necessary to specify the first
and second time derivatives of r and 6. Since r is constant, we have

r=r r=0 ¥=0

Thus,
v, =F= Ans.
vy =rf Ans
a,=F— i = -t Ans.
ag = M+ 20 = il Ans

These results are shown in Fig. 12-32b.

NOTE: The n, 1 axes are also shown in Fig. 12-32b, which in this special
case of circular motion happen to be collinear with the r and 6 axes,
respectively. Since v = v, = v, = r#, then by comparison,

2 2 N
e P
P r
dv d dr . d
dy = @ EIT.F_d.'( ]_d.'9+rd_0+re

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 1218

The rod OA in Fig. 12-33a rotates in the horizontal plane such that
# = () rad. At the same time, the collar B is sliding outward along OA
so that r = (100%) mm. If in both cases 1 is in seconds, determine the
velocity and acceleration of the collar whenr = 1 5.

SOLUTION

Coordinate System. Since time-parameltric equations of the path
are given, it is not necessary to relate r to 6.

Velocity and Acceleration. Determining the time derivatives and

(a) =
evaluating them when 1+ = | s, we have

r= 100:2‘ = 100mm #=7r = lrad = 57.3°
i=ls =1s

PF= 200.'| =200mm/s 6 =37 = 3rad/s
r=ls =ls

= 200| = 200mm/s* # = 6r| = 6rad/s’,

=ls =1s

As shown in Fig. 12-33b,
v = fu, + riu,
= 200u, + 1003, = {200u, + 300u, } mm/s

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE | 12.18 CONTINUED

The magnitude of v is

As shown in Fig. 12-33¢,

The magnitude of a is

v = V(200 + (300)> = 361 mm/s i
300
£ lﬂﬂ.l(ﬁ) = 563° 6 +573° = 114° Ans.

a = (¥ — i, + (7 + 2ithu,
W = [200 — 100(3)*Ju, + [100(6) + 2(200)3]u,
@, = 1800 mm /s* = {=700u, + 1800u,} mm/s*

S~ a = V(=700 + (1800)* = 1930 mm/s’ Ans,
© 1800
— o | — o g 3 = e g
e 29 ¢ = tan (?m ) 68.7° (180° — ¢) + 57.3° = 169 An

NOTE: The velocity is tangent to the path; however. the acceleration is
directed within the curvature of the path, as expected.

Copyright © 2017 Pearson Education
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EXAMPLE | 12:19

The searchlight in Fig. 12-34a casts a spot of light along the face of a
wall that is located 100 m from the searchlight. Determine the
magnitudes of the velocity and acceleration at which the spot appears
to travel across the wall at the instant § = 45°. The searchlight rotates
at a constant rate of # = 4 rad/s.

SOLUTION

Coordinate System. Polar coordinates will be used to solve this
problem since the angular rate of the searchlight is given. To find the
necessary time derivatives it is first necessary to relate r to #. From
Fig. 12-34a,

r=100/cos i = 100 sec

Copyright © 2017 Pearson Education
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EXAMPLE | 12.19 CONTINUED

Velocity and Acceleration. Using the chain rule of calculus, noting
that disec ) = sec 0 tan 0 df, and d(1an §) = sec’ 0 df, we have

i = 100(sec 0 tan 0)0 ) o
# = 100(sec 0 tan 0)0(tan H)8 + 100 sec H(sec” H)(0)
+ 100 sec # tan 6(6)
100 sec # tan® @ (8)° + 100 sec’d@ (6)° + 100(sec 6 tan B)6

Since @ = 4 rad/s = constant, then # = 0, and the above equations,
when # = 45°, become

r = 100 sec 45° = 141.4
F = 400 sec 45° tan 45° = 565.7
¥ = 1600 (sec 45° tan® 45° + sec’ 45°) = 6788.2

Copyright © 2017 Pearson Education
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EXAMPLE | 12.19 CONTINUED

As shown in Fig. 12-34b,
v =, + riu,
565.7u, + 141.4(4)u,
= {565.7u, + 565.7u,} m/s
v =V + 1} = V(5657 + (565.7)
=800 m/s Ans.
As shown in Fig. 12-34c,

a=(F— i, + (ril + 2iu,
= [6788.2 — 141.4(4)°Ju, + [141.4(0) + 2(565.7)4]u,
= {4525.5u, + 4525.5u,} m/s?

a=Vd + a = V(452557 + (4525.5)°

= 6400 m/s’ Ans,

NOTE: It is also possible to find a without having to calculate ¥ (or
a,). As shown in Fig. 12-34d, since a, = 4525.5 m/s, then by vector
resolution, a = 4525.5/cos 45° = 6400 m/s”.

4525_5 m/s’

()
Fig. 12-34
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Due to the rotation of the forked rod, the ball in Fig. 12-35a travels
around the slotted path. a portion of which is in the shape of a
cardioid. r = 0.15(1 — cos #) m, where 8 is in radians. If the ball's
velocity is » = 1.2m/s and its acceleration is @ = 9m/s” at the
instant # = 180°, determine the angular velocity # and angular
acceleration # of the fork.

r=015(1 — cos&) m

SOLUTION

Coordinate System. This path is most and math ically
it is best expressed using polar coordinates, as done here, rather than
rectangular coordinates. Also, since # and # must be determined,
then r, # coordinates are an obvious choice.

Velocity and Acceleration. The time derivatives of r and # can be
determined using the chain rule.

r = 0.15(1 — cos f)
7 = 0.15(sin 0)d
= 0.15(cos 8)8(6) + 0.15(sin 8)8

~:

Evaluating these results at 8 = 1807, we have
r=03m F=0 F=-015

Since v = 1.2 m/s, using Eq. 12-26 to determine 8 yields

v = VI + ()
1.2 = V(0) + (0.38)
6 = 4rad/s Ans
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.20 CONTINUED

- S
4 \ -
‘," \ In a similar manner, # can be found using Eq. 12-30.
/ I
— " a= V- V= (8 + 267

r " \G;(K _ _
! & 9 = V[-0.15(4)* — 0.3(47°) + [0.38 + 2(0)(4)]

s , (97 = (~72)% + 0096

b - 8 = 18 rad/s’ Ans.

(b) Vectors a and v are shown in Fig. 12-35b.

B NOTE: At this location, the # and f (tangential) axes will coincide. The

+n (normal) axis is directed to the right, opposite to +r.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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12.9 Absolute Dependent Motion Analysis of Two Particles

m Motion of one particle depend on the corresponding
motion of another particle

m Movement of A downward along the inclined plane
will cause a movement of B up the other incline

m If the total cord length is /,, the two position
coordinates are related by the equation

SA —+ lCD —+ SB = lT ...ﬂ_l):llum

« Datum

m The negative sign indicates A
has a velocity downward
ds, , dsy

=0 or V==V,

dt dt

Copyright © 2017 Pearson Education Fig. 12-36
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12.9 Absolute Dependent Motion Analysis of Two Particles

m Time differentiation of the velocities yields the relation
between accelerations : az = - a,

m A is specified by 5 4, and the position of the end of the
cord from which block B is suspended is defined by 5,

m Position coordinate can be
related by

28 +h+s, =1

m Since [/ and 4 are constant
during the motion,

vy =—v, , 2ay,=-a,

Datum 54 =

Copyright © 2017 Pearson Education Fig. 12-37 @
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12.9 Absolute Dependent Motion Analysis of Two Particles

m Defining the position of block B from the center of

the bottom pulley (a fixed point),
20h—=sz)+h+s,=1

m Time differentiation yields

2vp=v, 2a,=a,

* Datum f"“‘"@ A

Datum

i

Datums

Fig. 12-37 (v

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.9,.

The above method of relating the dependent motion of one particle
to that of another can be performed using algebraic scalars or
position coordinates provided each particle moves along a rectilinear
path. When this is the case, only the magnitudes of the velocity and
acceleration of the particles will change, not their line of direction.

Position-Coordinate Equation.

e Establish each position coordinate with an origin located at a
fixed point or datum.

e It is not necessary that the origin be the same for each of the
coordinates: however, it is important that each coordinate axis
selected be directed along the path of motion of the particle.

e Using geomefry or trigonometry, relate the position coordinates
to the total length of the cord, Iy, or to that portion of cord. /,
which excludes the segments that do not change length as the
particles move —such as arc segments wrapped over pulleys.

e If a problem involves a system of two or more cords wrapped
around pulleys, then the position of a point on one cord must be
related to the position of a point on another cord using the above
procedure. Separate equations are written for a fixed length of
each cord of the system and the positions of the two particles are

then related by these equations (see Examples 12.22 and 12.23).

e

Copyright ¢ |
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12.9 Absolute Dependent Motion Analysis of Two Particles

Time Derivatives.

* Two successive time derivatives of the position-coordinate
equations yield the required velocity and acceleration equations
which relate the motions of the particles.

® The signs of the terms in these equations will be consistent with
those that specify the positive and negative sense of the position
coordinates.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.

12.9 Absolute Dependent Motion Analysis of Two Particles

The cable is wrapped around the pulleys on
this crane in order to reduce the required force
needed to hoist a load.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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Determine the speed of block A in Fig. 12-38 if block B has an upward
speed of 6 m/s.

C O D Datum
1.,
| |
| 5
SR
y
Sa E
A
B
6m/s
A
Fig. 12-38

Copyright © 2017 Pearson Education
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EXAMPLE

SOLUTION

Position-Coordinate Equation. There is one cord in this system
having segments which change length. Position coordinates s, and sg
will be used since each is measured from a fixed point (C or D) and
extends along each block’s path of motion. In particular, sp is directed
to point E since motion of B and E is the same.

The red colored segments of the cord in Fig. 12-38 remain at a

The remaining length of cord, /, is also constant and is related to the
changing position coordinates s, and sg by the equation

g +3sp=1

Time Derivative. Taking the time derivative yields
vy +3vg=10

so that when vy = —6 m/s (upward),

vy =18m/s | Ans

constant length and do not have to be considered as the blocks move.

Copyright © 2017 Pearson Education
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EXAMPLE | 12.22
Determine the speed of A in Fig. 12-39 if B has an upward speed
of 6 m/s.
Fig. 12-39
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.22 CONTINUED

SOLUTION

Position-Coordinate Equation. As shown, the positions of blocks
A and B are defined using coordinates s, and sp. Since the system has
two cords with segments that change length, it will be necessary to use
a third coordinate, sc, in order to relate s, to sg. In other words, the
length of one of the cords can be expressed in terms of 54 and sc, and
the length of the other cord can be expressed in terms of sg and s¢.

The red colored segments of the cords in Fig. 12-39 do not have to
be considered in the analysis. Why? For the remaining cord lengths,
say I, and /,, we have

5+ 2se =, sp+(sg—s=15h
Time Derivative. Taking the time derivative of these equations yields

vy +20-=0 ug —v-=10
Eliminating v produces the relationship between the motions of each
cylinder.

vy +4vp =0
so that when vy = —6 m/s (upward),
vy = +24m/s =24m/s | Ans.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE | 12:23

Determine the speed of block 8 in Fig. 12-40 if the end of the cord at
A is pulled down with a speed of 2 m/s.

*— Datum

Copyright © 2017 Pearson Education
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SOLUTION

Position-Coordinate Equation. The position of point A is defined by
54, and the position of block B is specified by s5 since point £ on the
pulley will have the same motion as the block. Both coordinates are
measured from a horizontal datum passing through the fived pin at pulley
D, Since the system consists of twe cords, the coordinates s, and sz cannot
be related directly. Instead, by establishing a third position coordinate, s¢,
we can now express the length of one of the cords in terms of s and s,
and the length of the other cord in terms of s, s, and s¢.

Excluding the red colored segments of the cords in Fig. 12-40, the
remaining constant cord lengths {, and I, (along with the hook and
link dimensions) can be expressed as

Sc+sg =1,
(Ga—S)+(sp—se) +sg=1h

Time Derivative. The time derivative of each equation gives

vetvg=10
vy =20+ 20 =0

Eliminating v, we obtain
vy tdvoy=0
so that when v, = 2 m/s (downward),

vp=-05m/s =05m/s T Ans.

EXAMPLE | 12.23 CONTINUED

Copyright © 2017 Pearson Education
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A man at A is hoisting a safe § as shown in Fig. 12-41 by walking to the
right with a constant velocity v, = 0.5 m/s. Determine the velocity and
acceleration of the safe when it reaches the elevation of 10 m. The rope
is 30 m long and passes over a small pulley at D.

SOLUTION

Position-Coordinate Equation. This problem is unlike the previous
examples since rope segment DA changes both direction and
magnitude. However, the ends of the rope, which define the positions
of C and A, are specified by means of the x and y coordinates since
they must be measured from a fixed point and directed along the paths
of motion of the ends of the rope.

The x and y coordinates may be related since the rope has a fixed
length / = 30 m, which at all times is equal to the length of segment DA
plus CD. Using the Pythagorean theorem to determine Iy, we have

Ipy = V(150 + x%: also, lep = 15 — y. Hence,

g = 0.5m/s I=ips*lco
F 0=V + X+ (15—
y=V25+ 2 - 15 (1)
Fig. 12-41
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.24 CONTINUED

d*y
B=ar

Time Derivatives. Taking the time derivative, using the chain rule
(see Appendix C), where vg = dy/dt and v, = dx/dt, yields

o 1
ST a L2vns+ 2ld
X
= ——1 (2)
Vs + 2

Aty = 10 m, x is determined from Eq. 1, i.e., x = 20 m. Hence, from
Eq.2 withw, = 0.5m/s,

20
V225 + (20
The acceleration is determined by taking the time derivative of Eq. 2.
Since v 4 is constant, then a, = du,/dt = 0, and we have

—x(dx/dt) 1 dx 1 du, 2253
@25 + x’)-‘ﬂ]m“ i [\/zzs + r‘](I)”‘ - [\/2:5 ¥ ,ﬁ]x7 T @5+ AP
Al x = 20m, with v, = 0.5 m/s, the acceleration becomes
225(0.5 m/s)*
- [225 + (20 m)*1*?

(0.5) = 0.4 m/s = 400mm/s | Ans.

vy =

as = 0.00360 m/s* = 3.60 mm/s’ | Ans.

NOTE: The constant velocity at A causes the other end C of the rope
to have an acceleration since v, causes segment DA to change its
direction as well as its length.

Copyright © 2017 Pearson
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12.10 Relative Motion Analysis of Two Particles Using Translating Axes

m There are cases where the path of motion for a
particle is complicated

m It may be easier to analyze the motion in parts by
using two or more frames of reference

Position

m Absolute position of r ,and
is measured from O of the fixed

Translating
AR observer

x, y, z reference frame Flxed
Ve =00+ 154 233 /
Fig. 12-42
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.10 Relative Motion Analysis of Two Particles Using Translating Axes

Velocity

m By taking the time derivatives, V3 =V, + Vg4 (15

m V,=dr,/dt and v, =dr, /dt referto absolute
velocities

m Relative velocity vV, , =dr,,,/dt is observed from
the translating frame

Acceleration
m The time derivative yields : az=a,+a,;,, (12-35)
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.
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12.10 Relative Motion Analysis of Two Particles Using Translating Axes

Procedure for Analysis

* When applying the relative velocity and acceleration equations, it
is first necessary to specify the particle A that is the origin for the
translating x’, y’, z" axes. Usually this point has a known velocity
or acceleration.

e Since vector addition forms a triangle, there can be at most two
unknowns, represented by the magnitudes and/or directions of
the vector quantities.

e These unknowns can be solved for either graphically, using
trigonometry (law of sines, law of cosines), or by resolving each of
the three vectors into rectangular or Cartesian components,
thereby generating a set of scalar equations.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

12.10 Relative Motion Analysis of Two Particles Using Translating Axes

The pilots of these close-flying planes
must be aware of their relative positions
and velocities at all times in order to
avoid a collision.

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE |12.25

A train travels at a constant speed of 60 mi/h and crosses over a road
as shown in Fig. 12-43a. If the automobile A is traveling at 45 mi/h
along the road, determine the magnitude and direction of the velocity
of the train relative to the automobile.

SOLUTION |

Vector Analysis. The relative velocity vy, is measured from the
translating x', y" axes attached to the automobile, Fig. 12-43a. It is
determined from v; = v, + vy, Since v; and v, are known in both
magnitude and direction, the unknowns become the x and y components
of v/4. Using the x, y axes in Fig. 12-43a, we have

Yr=V, + ¥
60i = (45 cos 45% + 45 sin 45%) + vo
via = {28.2i — 318§} mi/h

Copyright © 2017 Pearson Education
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EXAMPLE |12.25 CONTINUED
The magnitude of vy, is thus
Vs = V(2820 + (=318 = 425 mi/h Ans.

From the direction of each component, Fig. 12-43b, the direction of
Vi i

_ oy 318
(‘”T.M}.r 282
6 = 48.5° < Ans.

Note that the vector addition shown in Fig. 12-43b indicates the
correct sense for vy,. This figure anticipates the answer and can be
used to check it.

Copyright © 2017 Pearson Education
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EXAMPLE [12.25 CONTINUED

SOLUTION I
Scalar Analysis. The unknown components of vy, can also be
determined by applying a scalar analysis. We will assume these
components act in the positive x and y directions. Thus,
b g /U ¢
60mi/h| _ [45mi/h (Vga)x (Orjad
(P2 [+ [ + %3]

Resolving each vector into its x and ¥ components yields

Ya

(%) 60 = 45 cos 45° + (v ), + 0
“+h 0 = 45sin45° + 0 + (vy),
Solving, we obtain the previous results, vy = 60 mi/h
(vr0)y = 282 mi/h = 282 mi/h — (©
(vra)y = —31.8mi/h = 31.8mi/h | Fig, 12-43
Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

EXAMPLE | 12.26

| P Plane A in Fig. 12-44a is flying along a straight-line path, whereas

v i ¥ plane B is flying along a circular path having a radius of curvature

‘.l'nllkm.rh| "::’ymkm“h L of py = 400 km. Determine the velocity and acceleration of B as
i X measured by the pilot of A,

: A 100 km /h? _t
£} A%k soLyTion

Velocity. The origin of the x and y axes are located at an arbitrary
fixed point. Since the motion relative to plane A is to be determined,
the translating frame of reference x', ¥' is attached to it, Fig. 12-44q.
(a) Applying the relative-velocity equation in scalar form since the velocity
vectors of both planes are parallel at the instant shown, we have

50 km/h*

+h Vg = Wy Uy
600 km/h = 700 km/h + vy,
} Vo vga = —100 km/h = 100 km/h | Ans.
vp = T00km/l L 600 kb The vector addition is shown in Fig. 12-44b,
(b)
Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.
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EXAMPLE [12.26 CONTINUED

Acceleration. Plane B has both tangential and normal components
of acceleration since it is flying along a curved path. From Eq. 12-20,
the magnitude of the normal component is

v (600 km/hy® 5
=1 = ————" = 900 km/h?
(ag), 2 200 km m/h
Applying the relative-acceleration equation gives
ag = ay +ag,
900i — 100 = 50j + ay),
Thus,
agy = {9008 — 150} km/h*
From Fig. 12-44¢, the magnitude and direction of ag, are therefore

15

0
agjy = 912km/h* § = tan 900 =246 S Am

900 km b NOTE: The solution to this problem was possible using a translating

o frame of reference, since the pilot in plane A is “translating.”
l : Observation of the motion of plane A with respect to the pilot of
150 ke /h? B plane B, however, must be obtained using a rotating set of axes

attached to plane B. (This assumes, of course, that the pilot of B is
fixed in the rotating frame, so he does not turn his eyes to follow the
Fig. 12-44 motion of A.) The analysis for this case is given in Example 16.21.

Copyright © 2017 Pearson Education & Gau Lih Book Co., Ltd.

At the instant shown in Fig. 12-45a, cars A and B are traveling with
speeds of 18 m/s and 12 m/s, respectively. Also at this instant, A has a
decrease in speed of 2 m/s”, and B has an increase in speed of 3 m/s”.
Determine the velocity and acceleration of B with respect to A,

SOLUTION
Velocity. The fixed x, y axes are established at an arbitrary point on
the ground and the translating x', ¥' axes are attached to car A,
Fig. 12-45a. Why? The relative velocity is determined from
Vg = ¥4 T Vgiu. What are the two unknowns? Using a Cartesian vector
analysis, we have
Vg = Va t+ Vo
=12j = (—18 cos 60°% — 18 sin 60°)) + vy
Via = {90 + 3.588j} m/s

{a)

vga = V(9 + (3.588)° = 9.69 m/s Ans 3.588 m/s Vi

Noting that vy, has +iand +j components, Fig. 12-45b, its direction is

Thus,

(Vgady 3588
tan = =—
(Uﬂml\' )

=2177A Ans.

(b)

Copyright © 2017 Pearson Education @ Gau Lih Book Co., Ltd.

70



EXAMPLE | 12.27 CONTINUED

Acceleration.  Car B has both tangential and normal components of
acceleration. Why? The magnitude of the normal component is

‘ )_E;_(ilm(‘s}z
= 100 m

Applying the equation for relative acceleration yields

= 1.440 m/s’

agp = a, +ag,
(—1.440i — 3j) = (2 cos 60°i + 2 sin 60%)) + ag),
agy = {-2.440i - 4.732j} m/s?

Here ag, has —i and —j components. Thus, from Fig. 12-45¢,
agiy = V(24400 + (4.732)* = 532 m/s’ Ans.

(ama)y _ 4732
(aga)e 2440

lan ¢ =

¢ =675 Ans.

NOTE: Is it possible to obtain the relative acceleration of a,  using this
method? Refer to the comment made at the end of Example 12.26.

2440 m/s?

5/ Il z) m/s’
()

Fig. 12-45
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